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The game: setup -

game engine

Goal:
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The game: positive feedback -

game engine

Step reward
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The game: negative feedback -

game engine

Step reward

O
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learner
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the learned stuff => policy -

game engine

Step reward
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policy improvement => |learning -

game engine

Step reward
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policy improvement => |learning -

game engine
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Reinforcement learning -

game engine

Key idea:
continuously improve

policy to increase total
reward

Step Reward

100

Step reward

actions game state
\
(rules learned, how to play the game) RL algorithm
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Episode 1 : play with 1st policy (random)

Action from

O

Policy

(rules learned, how to play the game)

State Policy Reward Next State
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Episode 1 : play with 1st policy (random)

Reward
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(rules learned, how to play the game)
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Episode 1 : play with 1st policy (random) Policy

(rules learned, how to play the game)

Action from
State Policy Reward Next State
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Episode 1 : improve 1st policy for state in step 3 Policy

(rules learned, how to play the game)

Action from
State Policy
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Episode 1 : improve 1st policy for state in step 2 Policy

(rules learned, how to play the game)

Action from
State Policy
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Episode 1 : improve 1st policy for state in step 1 Policy

(rules learned, how to play the game)

Action from
State Policy

m o
=
49(=-1 +100 -50)

Future Reward

(sum of all rewards from current state until
‘game over’)

5 6 7 Step#
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Episode 2 : play with 2nd policy

Already learned:
go left is ok
State

Action from
Policy

Reward

Policy

(rules learned, how to play the game)
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Episode 2 : play with 2nd policy

Already learned:
go left is ok
State

Action from

Policy

(rules learned, how to play the game)

Policy Reward Next State
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Already learned:

Episode 2 : play with 2nd policy don’t go up Policy

(rules learned, how to play the game)

Action from
State Policy o Reward Next State
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Episode 2 : play with 2nd policy

Action from
Policy

State

_
'

Policy

(rules learned, how to play the game)

Next State

Reward
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Episode 2 : play with 2nd policy Policy

(rules learned, how to play the game)

Action from
State Policy Reward Next State
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Episode 2 : improve 2nd policy for state in step 5

State

Action from

Episode Over
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FOLIE 22

REINFORCEMENT LEARNING

Policy

(rules learned, how to play the game)
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Episode 2 : improve 2nd policy for state in step 4 Policy

(rules learned, how to play the game)

Action from
State Policy

> 5110

Future Reward

(sum of all rewards from current state until
‘game over’)

N
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Episode 2 : improve 2nd policy for state in step 3 Policy
(rules learned, how to play the game)

Action from
State Policy
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Future Reward

(sum of all rewards from current state until
‘game over’)
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Episode 2 : improve 2nd policy for state in step 2 Policy

(rules learned, how to play the game)

Action from
State Policy
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‘game over’)
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Episode 2 : improve 2nd policy for state in step 2 Policy

(rules learned, how to play the game)

Action from
State Policy

= some running average
of old and new value

1 49 (=+100+100-1-50)

Future Reward

(sum of all rewards from current state until
‘game over’)
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Episode 2 : improve 2nd policy for state in step 1 Policy

(rules learned, how to play the game)

Action from
State Policy

B G
=
1 48(=-1+1oo+1oo-1 -50)

Future Reward

(sum of all rewards from current state until
‘game over’)
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a policy isamap from states to action probabilities
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...updated by the reinforcement learning algorithm

&

a policy isamap from states to action probabilities
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...updated by the reinforcement learning algorithm

&

a policy isamap from states to
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After many, many episodes, for each state...
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Algorithm sketch Policy

(rules learned, how to play the game)

Initialize table with random action probabilities for each state
—Repeat
play episode with policy given by table

Record (state,,action,,reward,),(state,,action,,reward,),.... for episode
For each step i
compute FutureReward,; = reward; + reward,,; +...
update table[state] s.t.
+ action; becomes for state; more likely if FutureReward; is “high”
+ action; becomes for state, less likely if FutureReward; is “low”
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Algorithm sketch Policy

(rules learned, how to play the game)

Initialize table with random action probabilities for each state
Repeat

play episode with policy given by table
Record (state,,action,,reward,),(state,,action,,reward,),.... for episode

For each step |
compute FutureReward,; = reward; + reward,,; +...
update table[state] s.t.
+ action; becomes for state; more likely if FutureReward; is “high”
+ action; becomes for state, less likely if FutureReward; is “low”
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Algorithm sketch

Initialize table with random action probabilities for each state

Repeat
play episode with policy given by table
Record (state,,action,,reward,),(state,,action,,reward,),.... for episode
For each step i

compute FutureReward,; = reward; + reward,,; +...

update table[state] s.t.
+ action; becomes for state; more likely if FutureReward; is “high”
+ action; becomes for state, less likely if FutureReward; is “low”
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The game: demo
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The bad news: nice idea,
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The bad news: nice idea, but...

too many states... too many actions

* Too much memory needed
* Too much time
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The solution

Idea:

O

Policy

(rules learned, how to play the game)

Replace lookup table with a neural network that approximates the action probabilities contained in the table

Instead of

Table[state] = action probabilities

Do

NeuralNet( state ) ~ action probablities

Initialize table with action probabilities for each state

Repeat /
play episode with policy given by table
Record (state,,action,,reward,),(state,,action,,reward,),.... for episode
For each step i

compute FutureReWW
update table[state;] st

» action; becomes for state; more likely if FutureReward; is “high”

| Change to "play episode with policy given by NeuralNet

| — Change to “update weights of NeuralNet”

» action, becomes for state; less likely if FutureReward; is “low”
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Neural nets to the rescue Policy

(rules learned, how to play the game)

Idea:
Replace lookup table with a neural network that approximates the action probabilities contained in the table

Instead of
Table[state] = action probabilities
Do
NeuralNet( state ) ~ action probablities

out,, 6
. | - Q&
. 4 ~ S OUte
i OUtright g

Encode state as vector \ } Use softmax

|
Apply neural network with “the right” weights

FOLIE 39
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Policy Gradient Algorithm sketch Policy

(rules learned, how to play the game)

Initialize neuralNet with random weights W

Repeat
play episode(s) with policy given by weights W
Record (state,,action,,reward,),(state,,action,,reward,),.... for episode(s)
For each step i
compute FutureReward,; = reward, + reward,,; +...
Update weights W

W=W + ??77?7

outup b
e - 0eD
i Outright g

Encode state as vector \ Y / Use softmax

FOLIE 40 Welghts W
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Policy Gradient Algorithm sketch Policy

(rules learned, how to play the game)

Initialize neuralNet with random weights W
Repeat

I_;Iay episode(s) with policy given by weights W
ecord (state,,action,,reward,),(state,,action,,reward,),.... for episode(s)

For each step i
compute FutureReward,; = reward, + reward,,; +...
Update weights W

W=W + ??77?7

outup b
e - 0eD
i Outright g

Encode state as vector \ Y / Use softmax
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Policy Gradient Algorithm sketch

Initialize neuralNet with random weights W
Repeat

play episode(s) with policy given by weights W

O

Policy

(rules learned, how to play the game)

Record (state,,action,,reward,),(state,,action,,reward,),.... for episode(s)

For each step i

compute FutureReward,; = reward, + reward,,; +...
Update weights W

W=W +

??77?7

!

Increases out

seds

WG
]l

Encode state as vector Y

Weights W
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Policy Gradient Algorithm sketch Policy

(rules learned, how to play the game)

Initialize neuralNet with random weights W

Repeat
play episode(s) with policy given by weights W
Record (state,,action,,reward,),(state,,action,,reward,),.... for episode(s)
For each step i

compute FutureReward,; = reward, + reward,,; +...
Update weights W

W =W + alpha * FutureReward, " Gradientyy ( neuralNet,,( state;, action; ) )
— |
Learning rate Increases out

v

outup b
o - 0eD
mod - S ot
i Outright g

Encode state as vector \ Y / Use softmax
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Policy Gradient

W = arg maxy E;p,

\ J \
Y

this is trouble expected total reward playing with W
=f(W)

T=(5,a1,71),(52a5T13), ...
[R(7)]

R(7) = Z T

i
pyw = episode probability given the policy defined
by the NeuralNet with weights W

Wis1 = Wi+ a - Vi f(Wy)

FOLIE 44
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Policy Gradient

T=(S,ay,71),(Syay13), ...

W = arg maxy E;.p,,, [R(T)] R(x) = Zr-

\

Y

this is trouble expected total reward playing with W

i
_fw) pyw = episode probability given the policy defined

by the NeuralNet with weights W

Wipr1 = Wi+ a- VWET~pW[R(T)]

this is the new trouble
wa pw (T) - R(7) = fT Vwpw () - R(7)
=J, pw@ -2 R(D)= [ py(D - Vylogpyw (@) - R(D)

pw () T
= E‘L’~pW [Vwlog pw () - R(7)] \

good news V;{(;‘) = V log f(x)

VWET~pW [R (T)]
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Policy Gradient

T = (sy,a1,71), (S, A3 1), -
W = arg maxy Er.p,,, [R(T)] Rt - Z’”’

\ J J

this is trouble * ” ing wi :
Is Is trouble “average” total reward playing with W oy, = episode probability given the policy defined

by the NeuralNet with weights W

Witr = Wi+ a-VyEr oy, [R(7)]

J

Y

this is the new trouble

Wip1 = Wi + a- ET~pW [Vwlogpw (7) - R(7)]
( . ) l_Y_)
ZVWNeuraINetW(si,ai) FutureReward,

W =W + alpha * Gradient,, ( neuralNet,( state, action, ) ) * FutureReward,

NAME DER PRASENTATION
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What for ? The real world

no feasible, deterministic algorithm
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What for ?

Classic
Machine
Learning

Traditional
Heuristics

Y

Automatic solution found in 93.4%

FOLIE 48
REINFORCEMENT LEARNING

Reinforcement
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The challenges

manage the water level on the roof

control & steer the water flow
find the right dimensions
save & reliable

FOLIE 49
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Finding the right dimensions

FOLIE 51
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Finding the ,,right” dimensions: demo

BGEBERIT

- GEBERIT
PROPLANNER

§ 2018 R2
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What if...

Collapsing pipes
Collapsing roofs
Clogged pipes
Facade damages

FOLIE 53
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Turning the problem into a game

BGEBERIT

GEBERIT
PROPLANNER

2018 R2

Step rewar

o Step Reward
O$O 100
O

actions

game state

@ Fec

(rules learned, how to play the game) RL algorithm
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Designing the Action-Space

: Snake game

Roof drainage systems

O
OO
O

Q&
O®
00O

» What actions would a human expert like to have ?

* Are theses actions sufficient ?
» Would more / other actions be helpful ?
« Can we drop any actions ?

FOLIE 55
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Designing the State-Space

Snake game Roof drainage systems .

o] ’“"1"(:‘[’”"{'
K

» What does a human expert look at ?

» Can you switch the experts between 2 steps ?
 Full state vs partial state

* Designing Features

FOLIE 56
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Designing the Reward Function

Snake game

Roof drainage systems .

Step Reward

100
Fruit 100
Death -50
Success 1000
Step -1

Fioaf dminage systess. ©

Change Error Count +/- 1 per Error

Success 100
Step -0.01

* How would you rate the result of an expert ?

* As simple as possible

* Positive feedback during the game
» Beware of “surprising policies”

» Game over if TotalReward too low

FOLIE 57
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Turning the problem into a game

GEBERIT

PROPLANNER

game engine

Q@

foof drainsge wystems @

Message e T bl b Kl VAR VR g g | ok
The raof cutlet was reset to it Basic settings Eff o T = S et le =
18 @ 517 The internal pipe pressure is 00 high 1 = BEom e i
@ 510 The intesnal pips pressure & too high 1 o B w e i
© 59:The intermal pipe pressure is o high. L E:'I: | -
© 58 The imternai pipe pressure s too high. G R prt
© 57 The internal pine pressure is 100 high. Tom i “ am e o "
© 56 The incernal pape pressure s too high ! vy @2 1 o i Lol L ik

00

actions

step reward — game state

output layer

hidden layer 1 hidden layer 2

Policy ELE
P

(rules learned, how to play the game) RL algorithm
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Finding the dimensions with reinforcement learning: demo

EGEBERIT
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Hydraulics Calculation Pipeline

Classic
Machine
Learning

Traditional
Heuristics

Reinforcement
Learning

U

Automatic solution found in 93.4% Finds a solution in 70.7%
of the remaining 6.6%

Automatic solution found in 98.1%
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Summary

Turning the problem into a game
Continuous policy improvement
No training dataset

Complements supervised learning
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Thank you!

Christian.Hidber@bSquare.ch

W +41 44 260 54 00

M +41 76 558 41 48
https://www.linkedin.com/in/christian-hidber/
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About Geberit

The globally operating Geberit Group is a
European leader in the field of sanitary
products. Geberit operates with a strong
local presence in most European countries,
providing unique added value when it comes
to sanitary technology and bathroom
ceramics.

The production network encompasses 30
production facilities, of which 6 are located
overseas. The Group is headquartered in
Rapperswil-Jona, Switzerland. With around
12,000 employees in around 50 countries,
Geberit generated net sales of CHF 2.9
billion in 2017. The Geberit shares are listed
on the SIX Swiss Exchange and have been
included in the SMI (Swiss Market Index)
since 2012.
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Resources

« Sutton & Barto: Reinforcement Learning, an introduction, 2"9 edition, 2018:
https://drive.google.com/file/d/10pPSz5AZ kVa1uWOdOiveNiBFIEOHjkG/view
« http://rll.berkeley.edu/deepricourse/f17docs/lecture 4 policy gradient.pdf
« http://karpathy.qithub.io/2016/05/31/rl/
» https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
* https://arxiv.org/pdf/1707.06347.pdf
* https://openai.com/
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